Part Number Hot Search : 
SCL4012B BD45XXXG TS7023 B1203 1N5244 SIO1049 DAP202 CAT508BP
Product Description
Full Text Search
 

To Download GA3201 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  v b out v reg in gnd sda b out b in c2 GA3201 c1 c5 c6 49k5 r3 r4 r6 r5 pgi slow average detector fast average detector control 10k rectifier v b 3k3 regulator 48k 48k 11k 1m 2m 13k1 12k 1 x - b - a - c 24db/oct band split filter high frequency expander / compressor low frequency expander / compressor r agc_in r h r l r lo r hi 4:1 1:1 c sad mpo r th b out b in r fc f out a out rec out c fad v bat v reg in gnd r1 r7 c4 c7 c3 69k5 100k 200k 200k 500k 200k 83n 0 14 73n 81n 92n 73n 7n4 8n5 2:1 c8 r2 gp522 1 2 3 8 6 4 5 7 all resistors on ohms, all capacitors in farads, unless otherwise stated. 85k6 42k8 preliminary data sheet GA3201 programmable dynameq ? ii features ? dynameq ? ii flexibility ? six programmable parameters ? 24db/oct state variable filter ? twin average detectors ? handles high input levels ? drives class d integrated receivers thinstax ? packaging hybrid typical dimensions: 0.200 x 0.115 x 0.066in. (5.08 x 2.92 x 1.68mm) description the GA3201 programmable hybrid is composed of a dynameq ? ii wide dynamic range compression signal processor and the gp522 controller memory chip. the hybrid incorporates 24db/oct filtering. the gain and frequency response are dependent on the users environment. the twin average detector circuit is optimized for sound quality during normal listening without sacrificing comfort during sudden loud sounds. the GA3201 features six programmable parameters: independent compression ratio adjustment in the high and low frequency channels, vc adjustment, threshold adjustment, crossover frequency adjustment and mpo adjustment. the output stage is designed as a preamplifier for the class d integrated receiver. block diagram revision date: september 1999 GA3201 gennum corporation p.o. box 489, stn. a, burlington, ontario, canada l7r 3y3 tel. +1 (905) 632-2996 web site: www.gennum.com e-mail: hipinfo@gennum.com document no. 521 - 92 - 02
2 521 - 92 - 02 GA3201 electrical characteristics absolute maximum ratings parameter value supply voltage 1.4 vdc power dissipation 25 mw operating temperature range -10 c to 40 c storage temperature range -20 c to 70 c pad connection parameter symbol conditions min typ max units hybrid current i amp - 395 580 m a minimum voltage vb 1.1 - - v total harmonic distortion thd v in = -40dbv at 1khz - 0.6 1.0 % thd with maximum allowable input thd m v in = -23dbv, rvc = 47k w - 2.0 10 % input referred noise irn aweighted filter - 3.0 - m v rms total system gain a v v in = -90dbv 44 47 50 db regulator voltage v reg i load = 30 m a 890 930 1000 mv agc lower threshold th lo -88.5 -84.5 -80.5 dbv upper threshold th hi -36 -32 -28 dbv compression gain range d a gain(-90dbv in ) -gain(-30dbv in ) 36.5 39.5 42.5 db system gain in compression a 60 v in =-60dbv 26 29 32 db min. compression ratio cmp 1 :1 v in =3khz, -60dbv to -40dbv, r3 - tap 15; r6 - tap 15 0.9 1.0 1.1 ratio max. comp. ratio cmp 4 :1 v in =3khz, -60dbv to -40dbv, r3 - tap 0; r6 - tap 0 3.6 4.0 4.3 ratio fast average detector time constant t fast - 7.4 - ms slow average detector time constant t slow - 166 - ms filter maximum crossover frequency ? c_max r1 - tap 15 3.0 3.9 - khz nominal crossover frequency ? c_nom r1 - tap 8 1.5 1.9 2.3 khz minimum crossover frequency ? c_min r1 - tap 0 - 0.9 1.4 khz filter rolloff rate - 24 - db/oct conditions: supply voltage v b = 1.3 v, frequency = 1 khz, temperature = 25 c. the programmable parameters are adjusted to the following set values unless otherwise specified. (mpo) r5 - tap15; (th) r2 - tap 0; (fc) r1 - tap 8; (hp) r6 - tap 0; (lp) r3 - tap 0; (vc) r4 - tap 0, r7 - tap 0. sda b in b out v bat out v reg in gnd gnd 8 7 6 5 4 1 2 3 3 caution electrostatic sensitive devices do not open packages or handle except at a static-free workstation
3 521 - 92 - 02 GA3201 50k sda 2 2 3k9 r vc v b 116k c2 GA3201 c1 c5 c6 49k5 r3 r4 r6 r5 pgi slow average detector fast average detector control 10k rectifier v b 3k3 regulator 48k 48k 11k 1m 2m 13k1 12k 1 x - b - a - c 24 db / oct band split filter high frequency expander / compressor low frequency expander / compressor r agc_in r h r l r lo r hi 4:1 1:1 c sad mpo r th b out b in r fc f out a out rec out c fad v bat v reg in gnd r1 r7 c4 c7 c3 69k5 100k 200k 200k 500k 200k 2:1 c8 r2 gp522 1 2 3 8 7 6 4 5 0 14 92n 83n 73n 81n 73n 7n4 8n5 all resistors in ohms, all capacitors in farads, unless otherwise stated. 85k6 42k8 fig. 1 test circuit parameter symbol conditions min typ max units stage a and b --- open loop gain (b) a ol_b -52-db input impedance (a) r in 8.0 10.6 12 k w output stage stage gain a c v in =-30dbv 7.0 9.0 11 db max output level mpo v in =-25dbv, r vcext =221k -20 -18 -16 dbv mpo range d mpo r5 - tap 15 to tap 0, r vcext =221k 11.6 13.6 15.6 db output resistance r out -24-k w electrical characteristics continued conditions: supply voltage v b = 1.3v, frequency = 1khz, temperature = 25 c the programmable parameters are adjusted to the following set values unless otherwise specified. (mpo) r5 - tap 15; (th) r2 - tap 0; (fc) r1 - tap 8; (hp) r6 - tap 0; (lp) r3 - tap 0; (vc) r4 - tap 0, r7 - tap 0. all conditions and parameters remain as shown in the test circuit unless otherwise specified in the conditions column.
4 521 - 92 - 02 GA3201 fig. 2 typical application circuit fig. 3 characterization circuit (used to generate typical curves) table of defaults r1 - tap 8 r2 - tap 0 r3 - tap 0 r4 - tap 2 r5 - tap 15 r6 - tap 0 r7 - tap 23 2 2 v b = 1.3v 50k to programmer pink noise generator v in = -80dbv c2 GA3201 c1 c5 c6 49k5 r3 r4 r6 r5 pgi slow average detector fast average detector control 10k rectifier v b 3k3 regulator 48k 48k 11k 1m 2m 13k1 12k 1 x - b - a - c 24 db / oct band split filter high frequency expander / compressor low frequency expander / compressor r agc_in r h r l r lo r hi 4:1 1:1 c sad mpo r th b out b in r fc f out a out rec out c fad v bat v reg in gnd r1 r7 c4 c7 c3 69k5 100k 200k 200k 500k 200k 83n 0 14 73n 81n 92n 73n 7n4 8n5 2:1 c8 r2 gp522 1 2 3 8 6 4 5 7 all resistors in ohms, all cpacitors in farads, unless otherwise shown. 85k6 42k8 v b r vc 100k log v b any knowles or microtronic microphone any knowles class d integrated receiver out 2 2 c2 GA3201 c1 c5 c6 49k5 r3 r4 r6 r5 pgi slow average detector fast average detector control 10k rectifier v b 3k3 regulator 48k 48k 11k 1m 2m 13k1 12k 1 x - b - a - c 24 db / oct band split filter high frequency expander / compressor low frequency expander / compressor r agc_in r h r l r lo r hi 4:1 1:1 c sad mpo r th b out b in r fc f out a out rec out c fad v bat v reg in gnd r1 r7 c4 c7 c3 69k5 100k 200k 200k 500k 200k 83n 0 14 73n 81n 92n 73n 7n4 8n5 2:1 c8 r2 gp522 1 2 3 8 6 7 4 5 all resistors in ohms, all cpacitors in farads, unless otherwise shown. 85k6 42k8
5 521 - 92 - 02 GA3201 -90 -80 -70 -60 -50 -40 -30 -20 -100 -90 -80 -70 -60 -50 -40 -30 -20 input level (dbv) output level (dbv) r3 - tap 0 r3 - tap 15 ?= 1khz r1 - tap 15 0 4 8 12 16 20 24 28 32 36 40 44 48 50 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 gain (db) r6 resistor taps (tap 0 - 0k w , tap 15 - 200k w ) v in = -80dbv -90 -80 -70 -60 -50 -40 -30 -20 -100 -90 -80 -70 -60 -50 -40 -30 -20 input level (dbv) output level (dbv) r6 - tap 0 r6 - tap 15 ?= 4 khz r1 - tap 0 battery + microphone + receiver out v bat b out b in sda 4 5 6 7 8 gnd gnd in v reg 3 3 2 1 2 2 + - to programmer fig. 4 typical assembly diagram fig. 5 i/o transfer function for different compression ratios (high frequency channel) fig. 6 high frequency gain (compression ratio adjustment) fig. 7 i/o transfer function for different compression ratios (low frequency channel) fig. 8 low frequency gain (compression ratio adjustment) 0 4 8 12 16 20 24 28 32 36 40 44 48 50 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 gain (db) r3 resistor taps (tap 0 - 0k w , tap 15 - 200k w ) v in = -80dbv typical performance curves
6 521 - 92 - 02 GA3201 -70 -60 -50 -40 -30 -20 -100 -90 -80 -70 -60 -50 -40 output level (dbv) input level (dbv) r2-tap 15 ?1khz r2-tap 0 r6-tap 0 r3-tap 0 0 10 20 30 40 50 100 1k 10k 20 20k gain (db) frequency (hz) v in = -80dbv r6 - tap 0 r1 - tap 2 r3 - tap 0 r1 - tap 2 fig. 9 frequency response for different crossover frquency steps fig. 10 frequency response for different crossover frequency steps 0 10 20 30 40 50 100 1k 10k gain (db) frequency (hz) 20 20k v in = -80dbv r3 - tap 0 r1 - tap 15 r1 - tap 0 100 1k 10k 0 10 20 30 40 50 gain (db) frequency (hz) 20 20k r1 - tap 0 r1 - tap 15 v in = -80dbv r6 - tap 0 fig. 11 crossover frquency representation fig. 12 crossover frequency adjustment fig. 13 i/o transfer function for different thresholds 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 500 10k 1k crossover frequency (hz) r1 resistor taps (tap 0 - 69.5k w , tap 15 - 0k w ) v in = -80dbv fig. 14 threshold adjustment -90 -86 -82 -78 -74 -70 -66 -62 -58 -54 -50 -46 -42 -40 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 r2 resistor taps (tap 0 - 49.5k w , tap 15 - 0k w ) output threshold level (dbv)
7 521 - 92 - 02 GA3201 fig. 15 i/o transfer function for different mpo steps -50 -40 -30 -20 -10 -50 -40 -30 -20 output level (dbv) input level (dbv) r5 - tap 15 r5 - tap 0 fig. 16 mpo adjustment -40 -38 -36 -34 -32 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12 -10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 output level (dbv) r5 resistor taps (tap 0 - 100k w , tap 15 - 0k w ) fig. 17 thd and noise vs frequency fig. 18 thd and noise vs input 0.1 1 10 0.1k 1.0k 10k thd & noise (%) frequency (hz) v in = -40dbv r4 - tap 7 r7 - tap 23 0.1 1 10 -80 -70 -60 -50 -40 -30 -20 thd & noise (%) input level (dbv) ?= 1khz r4 - tap 7 r7 - tap 23 fig. 19 intermodulation distortion (ccif) vs frequency fig. 20 intermodulation distortion (ccif) vs input level 0.1 1 10 10k 100k imd (%) frequency (hz) 3k v in = -40dbv ? = 200hz r4 - tap 7 r7 - tap 23 0.01 0.1 1 10 -80 -70 -60 -50 -40 -30 -20 imd (%) input level (dbv) ?= 4khz ? = 200hz r4 - tap 7 r7 - tap 23
8 521 - 92 - 02 GA3201 dimensions are in inches. dimensions in parenthesis are in millimetres converted from inches and include minor rounding errors. 1.0000 inches = 25.400 mm. dimension tolerances 0.003 ( 0.08) unless otherwise stated. minimum pad size 0.0285 x 0.0400 (0.724 x 1.016). xxxxxx - work order number. this hybrid is designed for either point-to-point manual soldering or can be reflowed according to gennums recommended reflow process (information note 521-45). GA3201 xxxxxx sda b in b out v bat out v reg in gnd gnd 8 7 6 5 4 1 2 3 3 0.071 max (1.80) 0.115 (2.92) 0.200 (5.08) gennum corporation assumes no responsibility for the use of any circuits described herein and makes no representations that the y are free from patent infringement. ? copyright march 1998 gennum corporation. all rights reserved. printed in canada. fig. 21 frequency response for different r4 values 10 20 30 40 50 60 100 1k 10k 20k 20 gain (db) frequency (hz) r4 = 100k w r4 = 200k w r4 = 49k w r4 = 22k w r4 = 10k w package dimensions document identification: preliminary data sheet the product is in a preproduction phase and specifications are subject to change without notice. gennum corporation mailing address: p.o. box 489, stn. a, burlington, ontario, canada l7r 3y3 tel. +1 (905) 632-2996 fax +1 (905) 632-2814 shipping address: 970 fraser drive, burlington, ontario, canada l7l 5p5 gennum japan corporation c-101, miyamae village, 2-10-42 miyamae, suginami-ku, tokyo 168-0081, japan tel. +81 (3) 3334-7700 fax: +81 (3) 3247-8839 revision notes: thinstax? added. change to max. supply voltage.


▲Up To Search▲   

 
Price & Availability of GA3201

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X